
粉末Ｘ線回折法による化学分析 2018 年 7 月 10 日作成

名古屋工業大学 先進セラミックス研究センター　井田 隆 2025 年 12 月 10 日更新

粉末Ｘ線回折法による化学分析 
８．逆畳込的処理　Deconvolutional treatment 
８.１　逆畳込　Deconvolution 
観測される強度データ  が，本質的な（正しい）強度図形  と，何らかの装置函数 

 との畳込 convolution で表されるとする。その関係は以下の数式で表される。 
たたみこみ

（補足 8.1.A）

(8.1.1)

ここで  はディラックのデルタ函数 Dirac delta である。このときに強度データ（畳
込）  のフーリエ変換 Fourier transform  （ “ ” の字形は “H” のフラクトゥール（亀甲文字）表記）

は，

(8.1.2)

と表される。式 (8.1.2) に式 (8.1.1) を代入すれば

(8.1.3)

と変形できる。式 (8.1.3) の変形には，ディラックのデルタ函数  の性質として，任意の
函数  に対して

(8.1.4)

の関係が成立することを用いた。

函数  と  のフーリエ変換をそれぞれ 

(8.1.5)

h(x) f (x)
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∞

−∞ ∫
∞

−∞
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∞
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(8.1.6)

とすれば，式 (8.1.3)，式 (8.1.5)，式 (8.1.6) から，

(8.1.7)

の関係が成立する。式 (8.1.7) は，畳込のフーリエ変換が成分函数のフーリエ変換の積 
せき

product に等しいことを示す。この関係は畳込定理 convolution theorem と呼ばれる。
たたみこみ

フーリエ変換 Fourier transform の逆変換は逆フーリエ変換 inverse Fourier transform と呼
ばれ，以下の式で表される（補足 8.1.B）。

(8.1.8)

装置函数  が既知であれば，「観測された強度データ  のフーリエ変換  を装
置函数  のフーリエ変換  で除した（割り算をした）値」の逆フーリエ変換をとれ

じょ

ば，本来は未知のはずの「本質的な（正しい）強度図形」を知れることになる。つまり

(8.1.9)

の計算をすれば良い。この「考え方」が逆畳込 deconvolution と呼ばれる。
ぎゃくたたみこみ

しかし，現実に観測された粉末Ｘ線回折強度データに逆畳込処理を施しても，実際には
「本質的な（正しい）粉末Ｘ線回折強度図形」が得られるわけではない (Ida & Toraya, 

2002)。

８.１.１　粉末Ｘ線回折強度データに対する逆畳込の報告例 

1948 年に Stokes は「粉末Ｘ線回折強度データに対して逆畳込を適用した結果」について
報告した (Stokes, 1948)。冷間加工された (cold-worked) 銅の削粉（切粉） (copper filings) と，

けずり こ き り こ

この削粉を焼き鈍した試料 (annealed copper) についてＸ線回折ピーク強度図形の測定が行
けずり こ なま

われた。Table 8.1.1 と Table 8.1.2（Stokes 論文の中のTable 1 と Table 2） に記載された強度
値を示す。

Table 8.1.1.1　冷間加工銅の回折ピーク強度 （Stokes (1948) 論文の Table 1） 
 は  単位

𝔊(ξ ) = ∫
∞

−∞
g(x) e2π iξx dx

ℌ(ξ ) = 𝔉(ξ ) 𝔊(ξ )

f (x) = ∫
∞

−∞
𝔉(ξ ) e−2π iξx dξ

g(x) h(x) ℌ(ξ )
g(x) 𝔊(ξ )

f (x) = ∫
∞

−∞

ℌ(ξ )
𝔊(ξ )

e−2π iξx dξ = ∫
∞

−∞

∫ ∞
−∞

h(x) e2πiξxdx

∫ ∞
−∞

g(x) e2πiξxdx
e−2π iξx dξ

h(x)

x 0.1 mm

-20 3 -10 33 0 277 10 29

-19 4 -9 42 1 243 11 26

h (x)x h (x)x h (x) x xh (x)
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Table 8.1.1.2　焼鈍銅の回折ピーク強度 （Stokes (1948) 論文の Table 2） 

 は  単位

Table 8.1.1 と Table 8.1.2 に記載された冷間加工銅と焼鈍銅の回折ピーク強度値をグラフ化
すると，Figure 8.1.1 のようになる。

冷間加工された銅の削粉の粉末回折ピークが，焼き鈍した金属試料の粉末回折ピークより
や なま

幅広（ブロード broad）な形状を示すことは，1948 年以前から知られた事実であった（補
はばひろ

足 8.1.C）。

-18 5 -8 50 2 233 12 21

-17 7 -7 60 3 208 13 18

-16 9 -6 82 4 177 14 16

-15 11 -5 102 5 147 15 14

-14 13 -4 140 6 125 16 12

-13 18 -3 194 7 83 17 10

-12 22 -2 237 8 70 18 8

-11 27 -1 267 9 39 19 7

20 7

h (x)x h (x)x h (x) x xh (x)

g(x)

x 0.1 mm

-13 0 -7 9 0 475 7 60

-12 0 -6 12 1 371 8 19

-11 0 -5 17 2 174 9 12

-10 2 -4 21 3 151 10 8

-9 4 -3 51 4 227 11 5

-8 6 -2 161 5 260 12 3

-1 369 6 160 13 1

x g (x) xg (x)x g (x)x g (x)
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Fig. 8.1.1.1　Stokes 論文 (Stokes, 1948) に示された冷間加工銅（左）（Stokes 論文の  
Figure 1）と焼鈍銅（右）（Stokes 論文の Figure 2）のＸ線回折ピーク形状

Figure 8.1.1 の右側に示した焼鈍銅試料の回折ピークは強度比  の二つのピークに分裂
しょうどん

しており，それぞれシーグバーン Siegbahn 記法での ， （IUPAC 推奨記法での 
き ほ う ユーパック

， ） ピークに対応づけられる。畳込定理に従えば，よく焼き鈍して結晶性の良好
たたみこみて い り なま

な銅試料の示す回折ピーク図形  を装置函数として，冷間加工銅のピーク形状  に
対する逆畳込処理を施せば，冷間加工によって銅の結晶構造に導入された構造乱れ 

structural disorder あるいは歪み strain の情報を抽出できるはずである。
ひず

Beevers-Lipson strips（補足 8.1.1.A）を用いてフーリエ変換の計算をするためには，函数 

 と  の最大値は  以下である必要がある。Stokes は，函数  のフーリエ変換の
実数部 と虚数部 ，函数  のフーリエ変換の実数部 と虚数部  を計算
するために，以下の式 (8.1.1.1)–(8.1.1.4) を用いた。

(8.1.1.1)

(8.1.1.2)

(8.1.1.3)

(8.1.1.4)

また，函数  のフーリエ変換の実数部 と虚数部  は，

(8.1.1.5)
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h(x) g(x) 99 h(x)
Hr(t) Hi(t) g(x) Gr(t) Gi(t)

Hr(t) =
1
5

N

∑
x=−N

h(x) cos
2π xt
60

Hi(t) =
1
5

N

∑
x=−N

h(x) sin
2π xt
60

Gr(t) =
1
10

N

∑
x=−N

g(x) cos
2π xt
60

Gi(t) =
1

10

N

∑
x=−N

h(x) sin
2π xt
60

f (x) Fr(t) Fi(t)

Fr(t) =
Hr(t)Gr(t) + Hi(t)Gi(t)

G2
r (t) + G2

i (t)
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(8.1.1.6)

として計算される。

Table 8.1.1.3　函数 , ,  のフーリエ成分。式 (8.1.1.1)–(8.1.1.6) による計算値。
Stokes (1948) 論文の Table 3 の空欄に相当する数値を青字で，ダッシュ記号の記入され
た欄に相当する数値を赤字で示す。

Fi(t) =
Hi(t)Gr(t) − Hr(t)Gi(t)

G2
r (t) + G2

i (t)

h(x) g(x) f (x)

0 619 0 258 0 2.40 0.00

1 518 21 242 39 2.10 -0.25

2 332 27 201 65 1.53 -0.36

3 205 28 150 72 1.19 -0.38

4 123 24 103 60 1.00 -0.35

5 60 7 69 36 0.73 -0.28

6 31 -11 51 8 0.56 -0.31

7 19 -20 47 -16 0.48 -0.26

8 10 -22 52 -33 0.32 -0.22

9 9 -17 61 -38 0.23 -0.14

10 5 -10 67 -33 0.12 -0.09

11 0 -7 67 -21 0.03 -0.10

12 -1 -5 61 -8 0.00 -0.09

13 -2 -4 50 2 -0.05 -0.08

14 -2 -5 36 8 -0.09 -0.11

15 1 -4 23 10 -0.01 -0.17

16 1 -1 13 8 -0.01 -0.11

17 -1 -1 6 5 -0.14 -0.01

18 2 -1 3 2 0.27 -0.63

19 3 -3 2 0 1.79 -1.89

20 5 -6 1 -1 4.65 -1.79

Hr(t ) Hi(t )t Gr(t ) Gi(t ) Fr(t ) Fi(t )
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式 (8.1.1.1)–(8.1.1.6) の数式に基づいて，コンピュータ (Wavemetrics, Igor Pro ver. 9 / Apple 

MacBook) を使って計算された数値を Table 8.1.1.3 に示す（補足 8.1.1.B）。Table 8.1.1.3 に
示した数値は Stokes 論文 (Stokes, 1948) の Table 3 に対応するものである。Stokes (1948) 論
文の Table 3 に記載された数値は，Table 8.1.1.3 に示した数値と比較して，わずかなずれは
あるのだが，概ね正確な数値であることを確認できる。

Table 8.1.1.3 では， Stokes (1948) 論文の Table 3 の中で「空白」にされた欄（セル）につい
て計算した数値を青字で記載し，ダッシュ記号 (—) のつけられた欄の数値を赤字で記載し
ている（補足 8.1.1.C）。

高次のフーリエ係数を無視するのは「フーリエ解析をする人」の使う常套手段である。例
じょうとう

えば「高次のフーリエ係数は雑音 (noise) についての情報しか含まないから」などと理由
づけがされる。

Stokes は，以下の数式を用いて  の逆フーリエ変換 inverse Fourier transform の
計算を行なった。

(8.1.1.7)

同じように Table 8.1.1.3 に記載された  の数値から  を計算すれば， 

Fig. 8.1.1.2 に示すピーク形状図形が得られる。

Fig. 8.1.1.2　Stokes 論文 (Stokes, 1948) に示された逆畳込計算結果 
（Stokes 論文の Figure 3 に対応）

Figure. 8.1.1.2 に示すピーク形状図形が，冷間加工 cold work によって金属物質の内部に導
入される構造秩序の乱れ・歪みを表すものとすれば，そのことには重要な意味がある。

Fr(t) + i Fi(t)

f (x) = 40
12

∑
t=−12

[Fr(t) + i Fi(t)] exp (−
2π ixt

60 )
= 40

12

∑
t=−12

Fr(t) cos
2π xt
60

+ 40
12

∑
t=−12

Fi(t) sin
2π xt
60

Fr(t), Fi(t) f (x)

800

600

400

200

0
-20 -10 0 10 20

x

Deconvolution,
 f(x)
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Stokes の導いたピーク形状はガウス型形状 Gaussian profile よりローレンツ型形状 

Lorentzian profile に近い。Figure 8.1.1.3 にガウス型函数（正規分布の確率密度函数）と
ローレンツ型函数（コーシー分布の確率密度函数）による曲線当て嵌め curve fitting の結

は

果を示す。

Fig. 8.1.1.3　Stokes 論文 (Stokes, 1948) に示された逆畳込計算結果に対するガウス型函数（左）
とローレンツ型函数（右）によるフィッティング図

剪断応力 shear stress により塑性変形 plastic deformation を生じた金属の「歪み」の回折
せんだん そ せ い ひず

ピーク形状がローレンツ Lorentz 型になること自体は自然である。

塑性変形により，積層不整 stacking fault がポアソン過程 Poisson process に従ってランダム
に導入される場合，可干渉性領域 coherent domain のサイズの統計分布は指数分布に従
う。指数分布の確率密度函数は裁断指数函数 truncated exponential function 

(8.1.1.8)

で表され，裁断指数函数  のフーリエ変換  は

(8.1.1.9)

となるから，回折強度に相当する「フーリエ変換  の複素絶対値の自乗  」は 

(8.1.1.10)

となる。式 (8.1.1.10) の右辺は  を変数とするローレンツ型函数である。

また，構造の乱れが主に転位 dislocation によるものとすれば，転位の近傍では大きな格子
面間隔変化が生じるが，転位から位置が離れるにつれて弾性的な変形 elastic deformation 
によって面間隔変化も緩和される。そのような面間隔変化は，やはり裁断指数函数で表さ
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𝔉(k) = ∫
∞

0
e−ax e2π ikx dx = [ 1

−a + 2π ik
e(−a+2π ik)x]

∞

0
=

1
a − 2π ik

𝔉(k) |𝔉(k) |2

|𝔉(k) |2 =
1

a2 + 4π2k2

k
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れるはずであり，そのフーリエ変換の複素絶対値の自乗として，「ローレンツ型の回折
ピーク広がり」が予想される（補足 8.1.1.D）。

塑性変形を起こした金属の回折ピークの幅の広がり方が，ガウス型よりむしろローレンツ
そせい

型に近いことは，本来なら Fig. 8.1.1.1 に示した二つのピーク形状を見ただけで気づくべき
と思われるが， Fig. 8.1.1.2 あるいは Fig. 8.1.1.3 のような図形を示す方が，閲覧者に受け
入れられやすいだろう。そのような意味で， Stokes (1948) 論文 は，内容そのものにはあ
まり本質的な意味がなかったとしても，価値のある論文と評価される。

Fig. 8.1.1.4　Stokes 論文 (Stokes, 1948) に示されたデータに対して， 20 次までのフーリエ係数
を用いて「逆畳込」計算をした場合に得られる図形（左）と Stokes が 12 次までのフーリエ係数
のみを用いて「逆畳込」と呼んだ図形（右，Fig. 8.1.1.2 再掲）。

「フーリエ解析をする者の常套手段」である「高次数のフーリエ係数を強制的にゼロとみ
じょうとう

なす」ことが正当化されるのかは問題である。Stokes は  次以上のフーリエ係数を  と
みなした場合に，逆フーリエ変換として Fig. 8.1.1.2 のような図形を導けることを示した。
それに対して，Table 8.1.1.3 に示した  次のフーリエ係数をすべて切り捨てずに使うこと
として，式 (8.1.1.7)
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(8.1.1.7)

の代わりに，函数  を

(8.1.1.11)

として計算すれば，Fig. 8.1.1.4 の左側に示した図形が得られる。Stokes が 13 次以上の
フーリエ係数をゼロとみなす処置を施したことには，意図があった。

Fig. 8.1.1.5　Stokes の用いた窓函数（フィルター）

Fig. 8.1.1.6　Stokes の用いた平滑化函数 

一般的に，逆畳込処理（逆フーリエ変換処理）の際に，何次以上のフーリエ係数を打ち切
るべきかは単純な論理で決定できることではない。適切な次数は，強度データのサンプリ
ング（標本）間隔によっても，強度データの統計精度によっても，処理後のデータをどの
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∑
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∑
t=−12

Fi(t) sin
2π xt
60

f (x)
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∑
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ような目的で利用するかによっても変わる。高次のフーリエ係数を打ち切ることは，オー
ディオ（音響）機器や電気楽器などで古くから利用された「音色制御」(tone control) ある
いは「ロー・パス・フィルター」を作動させることに近い（補足 8.1.1.E）。周波数に応じ
て出力強度を変化させることは「フィルターをかける」とも呼ばれ，フーリエ解析・信号
処理 signal processing の分野では「窓函数 window function をかける」とも言われる。

まど

ロー・パス・フィルターをかけることは，実時間での音圧変動に対して平滑化 smoothing 
を施すことと同じことである。フーリエ解析（信号処理）の分野では多様なフィルター
（窓函数）が用いられ，Stokes の用いた窓函数は「矩形窓 rectangular window」と呼ばれ

くけい

る。Stokes の用いた窓函数  を Fig. 8.1.1.5 に示す。

Stokes の用いた窓函数  に対応する平滑化函数 (smoothing function)  は，例えば

(8.1.1.12)

として計算できる。式 (8.1.1.12) により計算される平滑化函数  を Fig. 8.1.1.6 に示す。

Stokes (1948) が Fig. 3（本稿中の Fig. 8.1.1.2） として示した図形は，「試料固有の歪み」
を表す図形とは言い切れない。「試料固有の歪み」を表す函数に Fig. 8.1.1.6 に示すような
平滑化函数  を畳み込んだもの（畳込 convolution） であり，「試料固有の歪み」を表

たたみこみ

す（かもしれない）図形を意図的に暈けさせたものとも言える。装置函数についての逆畳
ぼや

込的な処理を施して得られた「歪み」を特徴づける図形がローレンツ型線形を示すことが
「もっともらしいこと」だとしても，その線形が Fig. 8.1.1.6 に示すような平滑化函数  
を結果的には意図的に導入したこと（畳み込んだこと）により変形をしているはずであ
る。

８.１.２　逆畳込的処理　deconvolutional treatment 

筆者は 2002 年に粉末Ｘ線回折強度データに対して「逆畳込的処理」を施すことを提案し
た (Ida & Toraya, 2002)。当初は装置函数の逆畳込と，対称化処理を施した装置函数との畳
込とを同時に適用する方法として「逆畳込・畳込法」deconvolution-convolution method と
称していたが，Stokes (1948) 論文にも見られるように，フーリエ変換 Fourier transform の
ような手法を用いて「逆畳込」deconvolution をする者は，明示的か暗黙的かの違いはあっ
ても，必ず「畳込」もしていることが事実に近い。「逆畳込・畳込法」の呼称では，巷間

こうかん

で「逆畳込」deconvolution と呼ばれることとの違いが不明確であることもあり，逆 畳
ぎゃくたたみこみ デコンヴォリューション ぎゃくたたみ

込的処理 deconvolutional treatment と呼ぶこととした。
こみてきし ょ り デコンヴォリューショナル トリートメント

筆者が粉末Ｘ線回折データの処理法として提案したことの一つは，装置収差函数  の
逆畳込的な処理については，式 (8.1.9)：

S(t)

S(t) s(x)

s(x) = 40
20

∑
t=−20

S(t) cos
2π xt
60

s(x)

s(x)

s(x)

g(x)
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(8.1.9)

の逆畳込式の代わりに，

(8.1.2.1)

を用いることである。ただし，分光特性函数についての逆畳込的な処理の際には「現実的
なＸ線源の分光プロファイル」についての逆畳込処理と「左右対称・単一ピーク形状の仮
想的な  分光プロファイル」についての畳込処理とを同時に行う。

式 (8.1.2.1)  で表される処理は，装置函数  の逆畳込処理の際に，フィルターとして 

 を用いる発想であるとも言えるし，装置函数を対称化した函数の畳込を施すこと
とも言える。対称化された装置函数 symmetrized instrumental function を   と表記す
る。対称化装置函数   は以下の式によって定義される。

(8.1.2.2)

式 (8.1.2.2) で定義される対称化装置函数  の奇数階キュムラントはすべて  であ
り，函数  の偶数階キュムラントは函数  の偶数階キュムラントに等しい 

（補足 8.1.2.A）。

8.1.3　尺度変換の適用 

粉末Ｘ線回折測定に用いられるＸ線源の分光形状 spectroscopic profile と装置収差 
instrumental aberration の影響が局所的には畳込 convolution として近似的に表現されるこ
とは，1930 年代には粉末回折研究者の支持を得ていた (e.g. Jones, 1938)。しかし，分光形
状と装置収差の影響は，回折ピークの位置（回折角  ）によって変化する。畳込モデル
を用いる場合には「位置によって形状の変化する装置函数」が用いられる。

「位置によって形状の変化する装置函数との畳込としてモデル化する」ことが「まったく
無意味」というわけではないが，そのままでは粉末Ｘ線回折データの広い範囲にわたって
高速フーリエ変換アルゴリズム fast Fourier transform algorithm を利用した逆畳込処理・
畳込処理を適用することは不可能である。

標準的な実験室型粉末Ｘ線回折測定装置の意匠（デザイン）では，主に (1) Ｘ線源の分光
形状 spectroscopic profile，(2) 軸発散収差 axial-divergence aberration，(3) 赤道収差 
equatorial aberration，(4) 試料透過性収差 sample-transparency aberration の影響によっ
て回折ピークの形状が変化し，ピークの位置がシフトする（補足 8.1.3.A）。

f (x) = ∫
∞

−∞

ℌ(ξ )
𝔊(ξ )

e−2π iξx dξ = ∫
∞

−∞

∫ ∞
−∞

h(x) e2πiξxdx

∫ ∞
−∞

g(x) e2πiξxdx
e−2π iξx dξ

f (x) = ∫
∞

−∞

ℌ(ξ ) |𝔊(ξ ) |
𝔊(ξ )

e−2π iξx dξ

= ∫
∞

−∞

∫ ∞
−∞

h(x) e2πiξxdx ∫ ∞
−∞

g(x) e2πiξxdx

∫ ∞
−∞

g(x) e2πiξxdx
e−2π iξx dξ

Kα1

g(x)
|𝔊(ξ ) |

|g | (x)
|g | (x)

|g | (x) ≡ ∫
∞

−∞
|𝔊(ξ ) | e−2π iξx dξ = ∫

∞

−∞ ∫
∞

−∞
g(x) e2πiξxdx e−2π iξx dξ

|g | (x) 0
|g | (x) g(x)

2θ
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このうちでＸ線源の分光形状の影響の解釈は比較的容易である。

ブラッグの法則 Bragg’s law から，Ｘ線の波長 ，格子面間隔 ，回折角  の間には，

(8.1.3.1)

の関係がある。式 (8.1.3.1) を回折角  で微分すれば，

(8.1.3.2)

となる。式 (8.1.3.1) と式 (8.1.3.2) から，

(8.1.3.3)

の関係が導かれる。分光幅  の影響は回折角  を横軸とした場合には  に比例す
る。以下の関係を用いて横軸の値を  尺度から  尺度に変換する。

(8.1.3.4)

式 (8.1.3.4) を微分すれば，

(8.1.3.5)

となり，  の尺度（対数正弦尺度 logarithmic sine scale）を用いれば，分光幅 

 の影響は一定になる。

無偏光（ランダム偏光）光源を用いた典型的な粉末回折強度測定システムでは，幾何学補
正因子 geometrical correction factor は

(8.1.3.6)

と表される。

横軸値を  から  へ変換する際に，強度値  を  に変換する。尺度変換の際に積分強
度を維持するためには  の関係が成立すれば良いことと，幾何学補正因子
を考慮して，強度値の変換式として

(8.1.3.7)

の表現を用いる。

Cu Kα 線源を用いて測定された六硼化ランタン  の粉末Ｘ線回折強度データに対数正
ろくほう

弦尺度変換  を適用した例を Fig. 8.1.3.1 に示す。ただし，比較を容易にするた
めに Fig. 8.1.3.1 では式 (8.1.3.7) で表される縦軸変換は施していない。また筆者はゴニオ
メータ角度  と回折角  を大文字と小文字で区別する習慣を持つが，ここではその２
つの角度を同一視する。

λ d 2θ

λ = 2d sin θ
2θ

Δλ
Δ2θ

= d cos θ

Δλ
λ

=
Δ2θ

2 tan θ
Δλ 2θ tan θ

2θ χX

χX = ∫
d2θ

2 tan θ
= ln sin θ

ΔχX =
Δ2θ

2 tan θ
=

Δλ
λ

χX = ln sin θ
Δλ

fgcf(2θ ) =
2 sin θ sin 2θ
1 + cos2 2θ

2θ χX Y ηX

Y Δ2θ = ηX ΔχX

ηX = fgcf(2θ )
Δ2θ
ΔχX

Y = 2Y fgcf(2θ ) tan θ

LaB6

χX = ln sin θ

2Θ 2θ
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Fig. 8.1.3.1　六硼化ランタン  の (a) 実測粉末回折強度データと，(b) 横軸値に対数正弦尺度
を用いた図形

Fig. 8.1.3.1 を見れば，横軸を  として描いた図形では二重縮退した  準位から  準位
への電子遷移に由来する  輻射による回折ピークと  準位から  準位への電子遷移に
由来する  輻射による回折ピークの分裂幅が変化する一方で，対数正弦  の尺度
では  と   の分裂幅がどの回折ピークでも同じ間隔になることを確認できる 

（補足 8.1.3.B）。

精密なＸ線分光測定の結果， Cu  ピークも Cu  ピークも低エネルギー（長波長）
側に裾を引く非対称なピーク形状を示すことが知られるようになった (Deutsch et al., 2004; 

Ito et al., 2016)。このことは，内殻電子がＸ線を放出してエネルギー緩和をする際に外殻電
子（価電子）が原子束縛から解放されるシェイクオフ効果によるとされる (e.g. Kuroda, 

1976) 。シェイクオフ効果による本質的な Cu  ピークの非対称性の影響も，筆者の提案
するＸ線分光強度分布に関する逆畳込的処理を適用すれば，合理的に除去することができ
る。

8.1.4　Deutsch らの CuKα 四重線モデルの利用 

Deutsch ら (2004) は，Cu  輻射の分光強度分布をピーク位置 ，半値全幅 
ド イ チ ュ

，強度  の異なる４つのローレンツ型函数の和としてモデル
化した。  の値については曲線当て嵌め curve fitting により最適化が行われ
た。  の当て嵌め結果として，Table 8.1.4.1 の値が示されたた。このモデルを 

 輻射についての Deutsch らの四重線 quartet モデルと呼ぶ。Deutsch らの当て嵌めか
カルテット

たには過剰当て嵌め overfitting の傾向も認められるが，そのことは実用的には問題になら
ない。

20000
15000
10000
5000

0

15014013012011010090
2Θ (º)

20000
15000
10000
5000

0

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05
ln sin Θ

 

(a)

(b)

α1 α2

α1 α2

α1 α2

α1 α2

LaB6

2Θ L3 K
Kα1 L2 K

Kα2 ln sin Θ
Kα1 Kα2

Kα1 Kα2

Kα1

Kα (Eg)i, (Wg)i, (Ig)i

(Eg)i, (Wg)i, (Ig)i (Eg)i, (Wg)i, (Ig)i

(Eg)i, (Wg)i, (Ig)i

Rw = 0.7 %
CuKα
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Table 8.1.4.1　  輻射分光プロファイルについての Deutsch らの四重線モデル (2004)

Table 8.1.4.1 に記載した数値を用いて Deutsch らの四重線モデルをグラフ化すれば， 

Fig. 8.1.4.1 のようになる。

 Fig. 8.1.4.1　  輻射分光プロファイルについての Deutsch らの四重線モデル (2004)

現時点では， Deutsch らの  四重線モデルを利用することが合理的な選択と思われる
（補足 8.1.4.A）。しかし，分光プロファイルの影響を畳込として表現するためには，
Deutsch らが当て嵌めに用いた形式は，そのままでは扱いづらい。

光子エネルギーを ，プランク定数を ，振動数を ，光速を 

，波長を  とすれば，

(8.1.4.1)

の関係から，  のピークエネルギーを ，ピーク波長を として，

　 (8.1.4.2)

となるので，

CuKα

8047.837(2) 2.285(3) 0.957(2) 0.579

8045.367(22) 3.358(27) 0.090(1) 0.080

8027.993(5) 2.666(7) 0.334(1) 0.236

8026.504(14) 3.571(23) 0.111(1) 0.105

α21

IgComponent Eg (eV)

α11

Iinteg

α12

α22

Wg (eV)

0.15

0.10

0.05

0.00
8070806080508040803080208010

hν (eV)

 α11
 α12
 α21
 α22
 α

CuKα

CuKα

E h = 6.626 070 15 × 10−34 J s ν
c = 299 792 458 m s−1 λ

E = hν =
hc
λ

Cu Kα1 E1 λ1

E1

Ej − E1
=

λj − λ1

λ1
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(8.1.4.3)

(8.1.4.4)

(8.1.4.5)

として，分光プロファイル装置函数を

(8.1.4.6)

(8.1.4.7)

とすれば扱いやすくなる。

Deutsch らの研究により，  ピークも  ピークも非対称な形状を持つことが明確
にされたことには，重要な意味がある。例えば，粉末回折データから格子定数を求める場
合，「  の波長を  としたときに 」という文脈の用いられるのが

普通である。しかし，その波長として用いるべきなのは  の波長なのか，  波長と  
波長の重み付き平均なのか，二重線モデルを当て嵌めた時の最適値なのか，いずれの値を
用いるにしても混乱は不可避になる。

 ピークも  ピークも左右対称なローレンツ型函数で表されるとする「  
二重線モデル」を用いても，実用的には問題にならない場合もあると思われるが，それを
正当化しうる根拠は明確ではない。

（補足 8.1.A）畳込の数式表現（↩︎）

現実には，畳込についての式 (8.1.1) の表現
たたみこみ

(8.1.1)

より，以下の表現：

(8.1.A.1)

の方が一般的である。

式 (8.1.A.1) のように表現すれば，ディラックのデルタ函数を使わずに済むし，積分記号も一つ減らせる。し
かし，例えば畳込が可換 commutative な演算であり，

(8.1.A.2)

の関係があることは，式 (8.1.1) の表現では明確だが，式 (8.1.A.1) の表現では，畳込の可換性 commutative 

property が成立するか疑問に思われる場合もある。 

χi = ln
E1

Ei

wi =
Wi

2E1

si = (Iinteg)i

wX( χX) =
4

∑
i=1

si fLor( χX − χi; wi)

fLor(x; w) ≡
1

π w [1 + ( x
w )

2

]
−1

CuKα1 CuKα2

CuKα1 λKα1
= 1.540 593 Å ⋯

α11 α11 α12

CuKα1 CuKα2 CuKα

h (x) = f (x) * g (x) = ∫
∞

−∞ ∫
∞

−∞
δ(x − y − z ) f (y) g (z ) dy dz

h (x) = ∫
∞

−∞
f (x − y) g (y) dy

f (x) * g (x) = g (x) * f (x)
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また多重の畳込を表現するために，式 (8.1.1) の表現に基けば 
もとづ

(8.1.A.3)

のように，自然に拡張した表現が得られるのに対して，式  (8.1.1.A.1) の表現に基づく場合，

(8.1.A.4)

のように，どこか対称性の悪い表現になってしまう。

本文中に示す通り，畳込定理 convolution theorem は，式 (8.1.1) の表現によれば，容易に導出される。

フーリエ展開 Fourier expansion とキュムラント展開 cumulant expansion は似た性格を持つ。

畳込 convolution のフーリエ変換 Fourier transform が，成分函数のフーリエ変換の積に等しいことが畳込定
理 convolution theorem と呼ばれることは良く知られている。式 (8.1.1) の表現

(8.1.1)

に従えば，畳込  のフーリエ変換  （  は H の亀甲文字表現）（補足 8.1.A.1）は

(8.1.A.5)

と変形できることも本文中に示した通りである。

畳込のキュムラントが成分函数のキュムラントの和に等しいことが意外なほど知られていない。式 (8.1.1) の
表現によれば，「畳込におけるキュムラントの可加算性 additivity」も即座に導ける。

函数  のキュムラントは，キュムラント母函数 

の  階微分係数に相当し，畳込のキュムラント母函数は

h (x) = f1(x) * f2(x) * ⋯ * fn(x) =
∞

∫
−∞

∞

∫
−∞

⋯
∞

∫
−∞

δ x −
n

∑
j=1

xj

n

∏
j=1

fj(xj) dxn⋯ dx2 dx1

h (x) = f1(x) * f2(x) * ⋯ * fn(x) =
∞

∫
−∞

∞

∫
−∞

⋯
∞

∫
−∞

f1 x −
n

∑
j=2

xj

n

∏
j=2

fj(xj) dxn⋯ dx3 dx2

h (x) = f (x) * g (x) = ∫
∞

−∞ ∫
∞

−∞
δ(x − y − z ) f (y) g (z ) dy dz

h (x) ℌ(ξ ) ℌ

ℌ(ξ ) = ∫
∞

−∞
e2π iξxh (x) dx = ∫

∞

−∞
e2π iξx [∫

∞

−∞ ∫
∞

−∞
δ(x − y − z ) f (y) g (z ) dy dz] dx

= ∫
∞

−∞ ∫
∞

−∞ [∫
∞

−∞
e2π iξxδ(x − y − z ) dx] f (y) g (z ) dy dz

= ∫
∞

−∞ ∫
∞

−∞
e2π iξ(y+z) f (y) g (z ) dy dz = [∫

∞

−∞
e2π iξy f (y) dy] [∫

∞

−∞
e2π iξzg (z ) dz]

f (x)

Kf (θ ) = ln∫
∞

−∞
eθx f (x)dx

k

Kf *g(θ ) = ln∫
∞

−∞
eθx ∫

∞

−∞ ∫
∞

−∞
δ(x − y − z )f (y)g (z ) dy dz dx

= ln∫
∞

−∞ ∫
∞

−∞ [∫
∞

−∞
eθxδ(x − y − z ) dx] f (y)g (z ) dy dz

= ln∫
∞

−∞ ∫
∞

−∞
eθ(y+z) f (y)g (z ) dy dz = ln∫

∞

−∞
eθy f (y) dy ∫

∞

−∞
eθzg (z ) dz

= ln∫
∞

−∞
eθy f (y) dy + ln∫

∞

−∞
eθzg (z ) dz = Kf (θ ) + Kg(θ )
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となる。キュムラントで函数を特定できれば，多重畳込 multiple convolution の計算のために多重積分 
マルティプル コンヴォリューション

multiple integration の計算をする必要はない。加算（足し算）addition をすれば良いだけである。（↩︎）
マルティプル インテグレイション た ざん アディション

（補足 8.1.A.1）亀甲文字（フラクトゥール）と花文字（カリグラフィー）（↩︎）

標準的なセリフ系字体（Times フォントなど）で

　A,B,C,D,E,F, …

と表現される文字は，亀甲文字（フラクトゥール）（ドイツ語： Fraktur）では

　

と表現される。LaTeX では \mathfrak{A} とタイプすれば  と表示される。

似た表現に花文字（カリグラフィー）(calligraphy) があり，LaTeX で \mathcal{A, B, C, D, F,...} と入力すれば

　
と表現される。（↩︎）

（補足 8.1.B）フーリエ変換と逆フーリエ変換（↩︎）

函数  のフーリエ変換  は

(8.1.B.1)

と表される。函数  に対して，  をかけて  についての積分をする操作をすれば，

(8.1.B.2)

となる。（↩︎）

（補足 8.1.C）金属の削り粉の粉末回折ピーク（↩︎）

金属の冷間加工（研削・研磨・切断など）によって生ずる金属の削り粉（切粉）の粉末回折ピークがブロー
けず こ き り こ

ドな回折ピーク形状を示すことは，古くから知られていた。このことは，主に金属材料に機械的な剪断応
せんだん

力 shear stress が加えられることにより，塑性剪断変形 plastic shear deformation が起こり，結晶構造 
そ せ いせんだん

crystal structure に乱れが生じるからと解釈される。そのような結晶構造の乱れの一部は，積層不整 
みだ

stacking fault （２次元の構造欠陥）によるものとして説明される。現実に観測される線幅拡がり（ブロード
ニング）は，積層不整のみで合理的に説明することができるとは限らないが，積層不整の出現位置がランダ
ムであり，特別な規則性を持たなければ，確率論的にはポアソン過程 Poisson process として解釈される。
ポアソン過程に従うイベント（事象）の出現する間隔の統計分布が指数分布 exponential distribution に従う
ことも，古くから知られている。積層不整の間隔，可干渉性領域長 coherent domain size が指数分布に従う
のであれば，そのフーリエ変換の複素絶対値自乗がローレンツ型函数 Lorentzian function（コーシー 

Cauchy 分布の確率密度函数）に近い函数で表されることは，必然であるとも言える。

𝔄, 𝔅, ℭ, 𝔇, 𝔈, 𝔉, . . .

𝔄

𝒜, ℬ, 𝒞, 𝒟, ℰ, ℱ, . . .

f (x) 𝔉(ξ )

𝔉(ξ ) = ∫
∞

−∞
f (x) e2π iξx dx

𝔉(ξ ) e−2π iξx ξ

∫
∞

−∞
𝔉(ξ ) e−2π iξx dξ = ∫

∞

−∞ ∫
∞

−∞
f (y) e2π iξy dy e−2π iξx dξ = ∫

∞

−∞ ∫
∞

−∞
f (y) e2π iξ(y−x) dy dξ

= ∫
∞

−∞
f (y) [∫

∞

−∞
e2π iξ(y−x) dξ] dy = ∫

∞

−∞
f (y) δ(y − x) dy = f (x)
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1930 年代以降，透過型電子顕微鏡 transmission electron microscopy (TEM) の技術が実用化され，「金属加
工によって生ずる削り粉には，転位 dislocation （１次元の構造欠陥）が存在すること」「転位は刃状転位 

は じょう

edge-type dislocation と螺旋転位 screw-type dislocation に分類されること」などが明らかにされた。転位が
ら せ ん

存在する場合に，転位の周囲の空間は２次元的に弾性変形 elastic deformation をすると考えられる。転位の
近傍では強い格子面間隔変化が生じ，転位の位置から離れるほどその変化は緩和される。弾性変形を仮定す

かんわ

れば，格子面間隔の変化の度合いは指数分布に従うと予想され，そのフーリエ変換の複素絶対値自乗がロー
レンツ型函数 Lorentzian function（コーシー Cauchy 分布の確率密度函数）に近い函数で表されることも自
然に予想される。

歪んだ結晶の示す回折ピーク図形がガウス型函数 Gaussian function （正規分布 normal distribution の確率
密度函数）に従うはずとする意見も存在するが，その根拠は明確でない。（↩︎）

（補足 8.1.1.A）Beevers-Lipson strips（↩︎）

Beevers-Lipson strips は，コンピュータ（計算機）を利用できなかった初期の結晶学者が主に結晶構造解析を
目的としたフーリエ変換の計算をするために用いた道具で，細長い紙（ストリップ）に 99 までの数と三角
函数値との積の値が印刷される。正弦ストリップと余弦ストリップがある。定数と周期ごとに異なるスト
リップを揃えて木の箱に納めたものである。（↩︎）

（補足 8.1.1.B）Igor マクロ言語でのフーリエ計算（↩︎）

Stokes の論文 (1948) の Table 3 に相当する Table 8.1.1.3 を作成するために，以下の Igor マクロを用いた。た
だし ウェーブ wH に  の値，ウェーブ wG に  の値が入力済みであるとする。

Function MAKE_Fourier()
WAVE wH; // h(x), cold-worked copper 
WAVE wG; // g(x), annealed copper
MAKE/D/O/N=21 wHr,wHi,wGr,wGi,wFr,wFi;
variable t;
For (t = 0; t < 21; t += 1)

wHr[t] = 0;
wHi[t] = 0;
variable x;
variable i;
For (i = 0; i < 41; i += 1)

x = -20 + i;
wHr[t] += 0.2 * wH[i]*cos(2*pi*x*t/60);
wHi[t] += 0.2 * wH[i]*sin(2*pi*x*t/60);

EndFor; // (i = 0; i < 41; i += 1)
wGr[t] = 0;
wGi[t] = 0;
For (i = 0; i < 27; i += 1)

x = -13 + i;
wGr[t] += 0.1 * wG[i]*cos(2*pi*x*t/60);
wGi[t] += 0.1 * wG[i]*sin(2*pi*x*t/60);

EndFor; // (i = 0; i < 27; i += 1)
wFr[t] = wHr[t]*wGr[t]+wHi[t]*wGi[t];
wFr[t] /= wGr[t]^2+wGi[t]^2;
wFi[t] = wHi[t]*wGr[t]-wHr[t]*wGi[t];
wFi[t] /= wGr[t]^2+wGi[t]^2;

EndFor; // (t = 0; t < 21; t += 1)
wHr = round(wHr);
wHi = round(wHi);
wGr = round(wGr);
wGi = round(wGi);
wFr = round(wFr*100)/100;
wFi = round(wFi*100)/100;

End Function; // MAKE_Fourier();

h (x) g (x)
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（↩︎）

（補足 8.1.1.C）Stokes (1948) 論文の Table 3（↩︎）

Stokes の論文 (1948) の Table 3 では，冷間加工銅の観測回折強度  のフーリエ変換（フーリエ展開）
,  について次数の高いフーリエ係数の値は空欄にされているが，フーリエ変換の計算をしなかった

か，計算をしたのに記載しなかったかは明確ではない。（↩︎）

（補足 8.1.1.D）歪みによるブロードニング（↩︎）

歪みによるブロードニング（線幅の広がり）がローレンツ型函数で表されると予想するのは自然である。
「粉末回折」「結晶学」「中性子回折」などの分野で，歪みの影響がガウス型函数で表されるものとされる
場合もあるが，何かの根拠があってそのように主張されているわけではない。（↩︎）

（補足 8.1.1.E）ロー・パス・フィルター（↩︎）

音響機器などの音色調節器 tone control として用いられるロー・パス・フィルター low pass filter は，例えば
キャパシタ capacitor と可変抵抗器 variable resistor とを Fig. 8.1.1.E.1 のように接続するものである。通常は可
変抵抗器は最大の抵抗値で用い，高音成分を弱めるときに抵抗値を下げる。

Fig. 8.1.1.E.1　受動 (passive) ロー・パス・フィルター (low pass filter) の例。

（↩︎）

（補足 8.1.2.A）対称化装置函数のキュムラント（↩︎）

式 (8.1.2.2)

(8.1.2.2)

で定義される対称化装置函数 simmetrized instrumental function  の奇数階キュムラントはすべて  で
あり，偶数階キュムラントは装置函数  のキュムラントに等しい。このことを受け入れにくければ，以
下のように考えれば良い。

函数  と函数  の畳込は，函数  の自己相関 autocorrelation と呼ばれる。ここでは函数  の
自己相関を  と表記する。自己相関函数  は，以下のように表現できる。

h (x)

Hr(t ) Hi(t )

Input signal Output signal

Capacitor

Variable resistor

Ground

|g | (x) ≡ ∫
∞

−∞
|𝔊(ξ ) | e−2π iξx dξ

|g | (x) 0

g (x)

g (x) g (−x) g (x) g (x)

|g |2 (x) |g |2 (x)
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(8.1.2.A.1)

函数  のフーリエ変換が

(8.1.2.A.2)

と表されるとき，函数  のフーリエ変換は 

(8.1.2.A.3)

と表現され，函数  のフーリエ変換  の複素共役 complex conjugate  と同一である。畳込定理 

convolution theorem から，自己相関函数  のフーリエ変換は，  となる。

一方で，函数  の  階キュムラントを

(8.1.2.A.4)

とすれば，函数  の  階キュムラント  は

(8.1.2.A.5)

となる。

畳込におけるキュムラントの可加算性 additivity から，自己相関函数  の偶数階キュムラントは  と
なり，奇数階キュムラントは  である。

対称化装置函数  は  の逆フーリエ変換

(8.1.2.2)

として定義されるので，対称化装置函数  のフーリエ変換は  である。

対称化装置函数  の自己相関函数のフーリエ変換は  で表され，函数  の自己相関函数の
フーリエ変換と等しい。このことは，  の自己相関函数と函数  の自己相関函数とは同一であるこ
とを意味する。畳込におけるキュムラントの可加算性から，対称化装置函数  の偶数階キュムラント
は  となり，奇数階キュムラントは  となる。（↩︎）

（補足 8.1.3.A）装置収差によるピークシフト（↩︎）

装置収差によるピークシフト（ピーク位置のずれ）のことが系統誤差 systematic error と呼ばれる場合があ
る。しかし，装置収差の影響は装置の幾何学的な構成とブラッグの法則とから自然に予想・予測されること
であり，誤差 error と呼ぶべきものにはあたらず，無知 ignorance と呼ぶべきと思われる。（↩︎）

（補足 8.1.3.B）対数正弦尺度を用いる理由（↩︎）

Ｘ線源の分光強度プロファイルの影響について処理をする場合には対数正弦尺度 logarithmic sine scale を用
いる。回折角  尺度では粉末回折データをＸ線源の分光プロファイルとの畳込 convolution として表現する

|g |2 (x) = g (x) * g (−x) = ∫
∞

−∞ ∫
∞

−∞
δ(x − y − z ) g (y) g (−z ) dy dz

g (x)

𝔊(ξ ) = ∫
∞

−∞
g (x) e2π iξx dx

g (−x)

∫
∞

−∞
g (−x) e2π iξx dx = ∫

∞

−∞
g (y) e−2π iξy dy

g (x) 𝔊(ξ ) 𝔊*(ξ )

|g |2 (x) 𝔊(ξ ) 𝔊*(ξ ) = |𝔊(ξ ) |2

g (x) k

κk = [ ∂k

∂θk
ln∫

∞

−∞
eθxg (x)dx]

θ=0

g (−x) k κ−
k

κ−
k = [ ∂k

∂θk
ln∫

∞

−∞
eθxg (−x)dx]

θ=0

= [ ∂k

∂θk
ln∫

∞

−∞
e−θxg (x)dx]

θ=0

= {
κk [k : even]

−κk [k : odd]

|g |2 (x) 2κk

0

|g | (x) |𝔊(ξ ) |

|g | (x) ≡ ∫
∞

−∞
|𝔊(ξ ) | e−2π iξx dξ

|g | (x) |𝔊(ξ ) |

|g | (x) |𝔊(ξ ) |2 g (x)

|g | (x) g (x)

|g | (x)

κk 0

2θ
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ことは不可能 impossible だが，対数正弦  尺度を用いれば，粉末回折データをＸ線源の分光プロファ
イルとの畳込 convolution として表現しうる。

ブラッグの法則から

(8.1.3.B.1)

と書ける。Ｘ線波長の微小変化  は回折角の微小変化  に対して

(8.1.3.B.2)

の関係にあるから，

　 (8.1.3.B.3)

の関係が成立する。Ｘ線源の分光強度分布  の回折ピーク形状に及ぼす影響は，回折角  の尺度で
は  に比例する形状として現れる。このことは， Cu  Ｘ線源を利用した回折実験で Cu  ピークと 

 の分裂幅が概ね  に比例することからも確認できる。

Ｘ線源の分光強度プロファイルの影響は，強度データの横軸を回折角  とした場合には，畳込として表現
されない。「位置によって形状の変わる装置函数との畳込」と解釈される場合もあるが，そのことを前提と
する場合には，全粉末回折パターンの同時処理を行うことが不可能になる。

強度データの横軸の尺度を回折角  から対数正弦尺度 

 (8.1.3.B.4)

に変換すれば，

(8.1.3.B.5)

となり，対数正弦尺度  では，Ｘ線源の分光強度分布の影響がどの位置でも同様に現れ，強度図
形はＸ線源の分光強度分布の影響の畳込として表現される。

逆畳込処理・畳込処理を施すためには，横軸の対数正弦尺度変換にともなって，強度値  を

と変換すれば，回折ピークの積分強度値は維持され，  データに対する幾何学的な補正（ローレン
ツ・偏光補正）を  データに対しても同じように適用できる。

Fig. 8.1.2.1.1 に示したように，対数正弦尺度  を用いれば，粉末Ｘ線回折データをＸ線源の分光プロ
ファイルの影響との畳込 convolution として表現できることは事実である。逆に，回折角  尺度では，Ｘ線
分光プロファイルの影響は畳込として表現できない。（↩︎）

（補足 8.1.4.A）Deutsch らの Cu Kα 四重線モデルの利用（←）

Deutsch らのグループは 2004 年以前から  輻射と  輻射は非対称なピーク形状を示すことを指摘
していた (e.g.  Hölzer et al., 1997)。このことは，かなり深刻な問題を含むものであった。粉末Ｘ線回折デー
タは長い期間にわたって  Ｘ線源を  と  の二重線として扱われていた。そして，二重線モ
デルを用いるのであっても，実用的には問題にはならなかった。

一般的な粉末Ｘ線回折データの解析方法を用いる場合，二重線モデルを四重線モデルに置き換えると，必要
となる計算コストが２倍になり，処理のパフォーマンスが半分に落ちる。ユーザーにどちらのモデルを用い

ln sin θ

λ = 2d sin θ

Δλ Δ2θ

Δλ = (d cos θ ) Δ2θ

Δ2θ = 2 ( Δλ
λ ) tan θ

f (Δλ /λ) 2θ

tan θ Kα Kα1

Kα2 tan θ

2θ

2θ

χ = ln sin θ

Δχ =
Δ2θ

2 tan θ
=

Δλ
λ

χ = ln sin θ

Y

η = 2Y tan θ

(2θ, Y )

( χ, η)

ln sin θ

2θ

CuKα1 CuKα2

CuKα CuKα1 CuKα2
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るか選択させる方法はありうるが，ユーザー（特に初心者）にとっては，選択させられる項目を増やされる
のは気持ちの良いことではない。

粉末Ｘ線回折データから単位胞の寸法（格子定数 lattice constants）を求める作業は，粉末Ｘ線回折測定の主
な目的である同定・定性分析においても決定的に重要である。このときに例えば「  線のピーク波長
を  として， 」と言うような文脈が用いられる。しかし，Deutsch らの四重線モデルを採
用した場合に，その「  線のピーク波長」とは「  線のピーク波長」なのか「  線と

 線の重み付きの平均としてのピーク波長」なのか，重み付き平均をとるとして，それは算術平均 

arithmetic mean  なのか調和平均 harmonic mean なのかなど，多くの疑問・曖昧さが出現

する。

筆者の提案は「Deutsch の四重線モデルの逆畳込」と「  の位置にある仮想的な左右対称・単一の 

Lorentz 型函数の畳込」とを組み合わせる処理をすることである。この処置を施せば，ユーザーは「左右対
称な単一 Lorentz 型函数との畳込」として表される函数のみしかピーク形状モデルについて選択の余地がな
くなり，「ピークの位置」の意味づけに関する曖昧さは回避されることになる。（↩︎）

Cu Kα1

λ = 1.540 592 9 Å ⋯

Cu Kα1 Cu Kα11 Cu Kα11

Cu Kα12

∑i wiλi (∑i wi /λi)
−1

Cu Kα1
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